Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.

Identifieur interne : 001730 ( Main/Exploration ); précédent : 001729; suivant : 001731

Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.

Auteurs : Sara A. Zurita-Martinez [États-Unis] ; Rekha Puria ; Xuewen Pan ; Jef D. Boeke ; Maria E. Cardenas

Source :

RBID : pubmed:17565946

Descripteurs français

English descriptors

Abstract

The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.

DOI: 10.1534/genetics.107.072835
PubMed: 17565946
PubMed Central: PMC1950620


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
</author>
<author>
<name sortKey="Pan, Xuewen" sort="Pan, Xuewen" uniqKey="Pan X" first="Xuewen" last="Pan">Xuewen Pan</name>
</author>
<author>
<name sortKey="Boeke, Jef D" sort="Boeke, Jef D" uniqKey="Boeke J" first="Jef D" last="Boeke">Jef D. Boeke</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17565946</idno>
<idno type="pmid">17565946</idno>
<idno type="doi">10.1534/genetics.107.072835</idno>
<idno type="pmc">PMC1950620</idno>
<idno type="wicri:Area/Main/Corpus">001696</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001696</idno>
<idno type="wicri:Area/Main/Curation">001696</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001696</idno>
<idno type="wicri:Area/Main/Exploration">001696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
</author>
<author>
<name sortKey="Pan, Xuewen" sort="Pan, Xuewen" uniqKey="Pan X" first="Xuewen" last="Pan">Xuewen Pan</name>
</author>
<author>
<name sortKey="Boeke, Jef D" sort="Boeke, Jef D" uniqKey="Boeke J" first="Jef D" last="Boeke">Jef D. Boeke</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport (MeSH)</term>
<term>Amino Acids (pharmacology)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (classification)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Vesicular Transport Proteins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>Acides aminés (pharmacologie)</term>
<term>Amorces ADN (génétique)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Protéines adaptatrices du transport vésiculaire (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (classification)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines du transport vésiculaire (MeSH)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>DNA Primers</term>
<term>DNA, Fungal</term>
<term>Membrane Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Membrane Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Vesicular Transport</term>
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Vesicular Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Amorces ADN</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides aminés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Genes, Fungal</term>
<term>Mutation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Gènes fongiques</term>
<term>Mutation</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines adaptatrices du transport vésiculaire</term>
<term>Protéines du transport vésiculaire</term>
<term>Séquence nucléotidique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17565946</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0016-6731</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>176</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>2139-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zurita-Martinez</LastName>
<ForeName>Sara A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puria</LastName>
<ForeName>Rekha</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Xuewen</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boeke</LastName>
<ForeName>Jef D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA114107</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG002432</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HG 002432</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA 114107</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033942">Adaptor Proteins, Vesicular Transport</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071657">PEP3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C065710">PEP5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033921">Vesicular Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D033942" MajorTopicYN="N">Adaptor Proteins, Vesicular Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033921" MajorTopicYN="N">Vesicular Transport Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
<ArticleId IdType="pii">genetics.107.072835</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.107.072835</ArticleId>
<ArticleId IdType="pmc">PMC1950620</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Oct;80(5):325-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2006;40:159-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Sep;156(1):105-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Oct 30;151(3):551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Feb 5;152(3):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Apr;183(7):2331-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2001 Jul;2(7):476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11422941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Apr;160(4):1335-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11973291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 1;10(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4676-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Oct;24(19):8332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1986 Sep;50(3):280-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2945985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1995;11:1-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8689553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Nov;8(11):2307-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9362071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2531-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Nov;19(11):7568-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Nov 5;16(3):487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 Oct;107(4):1369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3049619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Dec;16(5-6):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2692852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1990 Sep;54(3):266-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2215422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Dec;11(12):5813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Mar 20;68(6):1077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Dec;3(12):1389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883373</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Boeke, Jef D" sort="Boeke, Jef D" uniqKey="Boeke J" first="Jef D" last="Boeke">Jef D. Boeke</name>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<name sortKey="Pan, Xuewen" sort="Pan, Xuewen" uniqKey="Pan X" first="Xuewen" last="Pan">Xuewen Pan</name>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Zurita Martinez, Sara A" sort="Zurita Martinez, Sara A" uniqKey="Zurita Martinez S" first="Sara A" last="Zurita-Martinez">Sara A. Zurita-Martinez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001730 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001730 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17565946
   |texte=   Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17565946" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020